
 
 SUNGHYUN PARK

DISSERTATION DEFENSE

Friday, September 10, 2021
10:30am - 12:30pm
Virtual (Passcode: 197695)

ABSTRACT: To deliver the best performance to users, modern compilers apply hundreds of 
optimizations that transform a program into a more efficient form. Since a program execution 
is a complicated process of the delicate interplay between software and hardware, each 
compiler optimization should be carefully determined with consideration for its trade-offs.

Today, most of the important optimization decisions are made by hand-crafted heuristics 
which often largely depend on the developers’ expertise. However, as the system complexity 
continues to increase, such manual approach often overly simplifies interactions between 
diverse system components and results in the failure to achieve maximum performance. 
Furthermore, a huge amount of time and cost need to be repeatedly invested for this manual 
tuning process whenever one of the system components is updated. 

To attack these challenges, this thesis proposes a suite of auto-tuning methods that can 
successfully improve optimization decisions inside state-of-art compilers. By focusing on 
one of the most representative compiler optimizations, the first part of this thesis suggests 
a methodology that automatically constructs the best affordable decision model for the 
dynamic binary translator in a mobile system. By effectively learning the patterns between 
optimal decisions and workload features, this method significantly outperforms the best 
heuristics handwritten by industry experts. Next, a group of optimizations is considered. To 
identify the best use of existing optimizations, the second part proposes an intelligent pure 
search method, called SRTuner, which customizes effective optimization settings for each 
workload by exposing important inter-optimization relations. Finally, the last work of this 
thesis proposes Collage which is an auto-tuning system that attacks the practical problem 
of identifying the best mixed use of diverse backends to run deep learning workloads. The 
experimental results demonstrate that this system efficiently customizes a fast execution plan 
that outperforms the hand-written strategies in the existing deep learning frameworks. 

CHAIR: Prof. Scott Mahlke

Compiler Auto-tuning For Code 
Optimization

https://umich.zoom.us/j/99511820012?pwd=Tks2eXdsemlQOHFYUy9EN3NzaHJGZz09

