Eleven papers by CSE researchers at ICLR 2025
Eleven papers by researchers affiliated with CSE are being presented at the 2025 International Conference on Learning Representations (ICLR). One of the top international conferences in artificial intelligence (AI), ICLR brings together top experts in fields ranging from robotics to statistics to discuss the latest findings related to deep learning. This year’s conference is taking place in Singapore from April 24-28.
CSE authors are presenting on a range of innovations and findings at ICLR 2025, from advancements in multilingual moral alignment of language models to novel methods for improving hierarchical image classification and robust multi-modal perception systems. The papers being presented are as follows, with the names of authors affiliated with CSE in bold:
Do Vision-Language Models Represent Space and How? Evaluating Spatial Frame of Reference under Ambiguities
Zheyuan Zhang, Fengyuan Hu, Jayjun Lee, Freda Shi, Parisa Kordjamshidi, Joyce Chai, Ziqiao Ma
Abstract: Spatial expressions in situated communication can be ambiguous, as their meanings vary depending on the frames of reference (FoR) adopted by speakers and listeners. While spatial language understanding and reasoning by vision-language models (VLMs) have gained increasing attention, potential ambiguities in these models are still under-explored. To address this issue, we present the COnsistent Multilingual Frame Of Reference Test (COMFORT), an evaluation protocol to systematically assess the spatial reasoning capabilities of VLMs. We evaluate nine state-of-the-art VLMs using COMFORT. Despite showing some alignment with English conventions in resolving ambiguities, our experiments reveal significant shortcomings of VLMs: notably, the models (1) exhibit poor robustness and consistency, (2) lack the flexibility to accommodate multiple FoRs, and (3) fail to adhere to language-specific or culture-specific conventions in cross-lingual tests, as English tends to dominate other languages. With a growing effort to align vision-language models with human cognitive intuitions, we call for more attention to the ambiguous nature and cross-cultural diversity of spatial reasoning.

ELFS: Label-Free Coreset Selection with Proxy Training Dynamics
Haizhong Zheng, Elisa Tsai, Yifu Lu, Jiachen Sun, Brian Bartoldson, Bhavya Kailkhura, Atul Prakash
Abstract: High-quality human-annotated data is crucial for modern deep learning pipelines, yet the human annotation process is both costly and time-consuming. Given a constrained human labeling budget, selecting an informative and representative data subset for labeling can significantly reduce human annotation effort. Well-performing state-of-the-art (SOTA) coreset selection methods require ground truth labels over the whole dataset, failing to reduce the human labeling burden. Meanwhile, SOTA label-free coreset selection methods deliver inferior performance due to poor geometry-based difficulty scores. In this paper, we introduce ELFS (Effective Label-Free Coreset Selection), a novel label-free coreset selection method. ELFS significantly improves label-free coreset selection by addressing two challenges: 1) ELFS utilizes deep clustering to estimate training dynamics-based data difficulty scores without ground truth labels; 2) Pseudo-labels introduce a distribution shift in the data difficulty scores, and we propose a simple but effective double-end pruning method to mitigate bias on calculated scores. We evaluate ELFS on four vision benchmarks and show that, given the same vision encoder, ELFS consistently outperforms SOTA label-free baselines. For instance, when using SwAV as the encoder, ELFS outperforms D2 by up to 10.2% in accuracy on ImageNet-1K. We make our code publicly available on GitHub.
Let Me Grok for You: Accelerating Grokking via Embedding Transfer from a Weaker Model
Zhiwei Xu, Zhiyu Ni, Yixin Wang, Wei Hu
Abstract: ”Grokking” is a phenomenon where a neural network first memorizes training data and generalizes poorly, but then suddenly transitions to near-perfect generalization after prolonged training. While intriguing, this delayed generalization phenomenon compromises predictability and efficiency. Ideally, models should generalize directly without delay. To this end, this paper proposes GrokTransfer, a simple and principled method for accelerating grokking in training neural networks, based on the key observation that data embedding plays a crucial role in determining whether generalization is delayed. GrokTransfer first trains a smaller, weaker model to reach a nontrivial (but far from optimal) test performance. Then, the learned input embedding from this weaker model is extracted and used to initialize the embedding in the target, stronger model. We rigorously prove that, on a synthetic XOR task where delayed generalization always occurs in normal training, GrokTransfer enables the target model to generalize directly without delay. Moreover, we demonstrate that, across empirical studies of different tasks, GrokTransfer effectively reshapes the training dynamics and eliminates delayed generalization, for both fully-connected neural networks and Transformers.

Dynamics of Concept Learning and Compositional Generalization
Yongyi Yang, Core Francisco Park, Ekdeep Singh Lubana, Maya Okawa, Wei Hu, Hidenori Tanaka
Abstract: Prior work has shown that text-conditioned diffusion models can learn to identify and manipulate primitive concepts underlying a compositional data-generating process, enabling generalization to entirely novel, out-of-distribution compositions. Beyond performance evaluations, these studies develop a rich empirical phenomenology of learning dynamics, showing that models generalize sequentially, respecting the compositional hierarchy of the data-generating process. Moreover, concept-centric structures within the data significantly influence a model’s speed of learning the ability to manipulate a concept. In this paper, we aim to better characterize these empirical results from a theoretical standpoint. Specifically, we propose an abstraction of prior work’s compositional generalization problem by introducing a structured identity mapping (SIM) task, where a model is trained to learn the identity mapping on a Gaussian mixture with structurally organized centroids. We mathematically analyze the learning dynamics of neural networks trained on this SIM task and show that, despite its simplicity, SIM’s learning dynamics capture and help explain key empirical observations on compositional generalization with diffusion models identified in prior work. Our theory also offers several new insights—e.g., we find a novel mechanism for non-monotonic learning dynamics of test loss in early phases of training. We validate our new predictions by training a text-conditioned diffusion model, bridging our simplified framework and complex generative models. Overall, this work establishes the SIM task as a meaningful theoretical abstraction of concept learning dynamics in modern generative models.
Visually Consistent Hierarchical Image Classification
Seulki Park, Youren Zhang, Stella Yu, Sara Beery, Jonathan Huang
Abstract: Hierarchical classification predicts labels across multiple levels of a taxonomy, e.g., from coarse-level Bird to mid-level Hummingbird to fine-level Green hermit, allowing flexible recognition under varying visual conditions. It is commonly framed as multiple single-level tasks, but each level may rely on different visual cues: Distinguishing Bird from Plant relies on global features like feathers or leaves, while separating Anna’s hummingbird from Green hermit requires local details such as head coloration. Prior methods improve accuracy using external semantic supervision, but such statistical learning criteria fail to ensure consistent visual grounding at test time, resulting in incorrect hierarchical classification. We propose, for the first time, to enforce internal visual consistency by aligning fine-to-coarse predictions through intra-image segmentation. Our method outperforms zero-shot CLIP and state-of-the-art baselines on hierarchical classification benchmarks, achieving both higher accuracy and more consistent predictions. It also improves internal image segmentation without requiring pixel-level annotations.

A Large-scale Training Paradigm for Graph Generative Models
Yu Wang, Ryan Rossi, Namyong Park, Huiyuan Chen, Nesreen Ahmed, Puja Trivedi, Franck Dernoncourt, Danai Koutra, Tyler Derr
Abstract: Large Generative Models (LGMs) such as GPT, Stable Diffusion, Sora, and Suno are trained on a huge amount of texts, images, videos, and audio that are extremely diverse from numerous domains. This large-scale training paradigm on diverse well-curated data enhances the creativity and diversity of the generated content. However, all previous graph-generative models (e.g., GraphRNN, MDVAE, MoFlow, GDSS, and DiGress) have been trained only on one dataset each time, which cannot replicate the revolutionary success achieved by LGMs in other fields. To remedy this crucial gap, we propose a large-scale training paradigm that uses a large corpus of graphs (over 5000 graphs) from 13 domains, leading to the development of large graph generative models (LGGMs). We empirically demonstrate that the pre-trained LGGMs have superior zero-shot generative capability to existing graph generative models. Furthermore, our pre-trained LGGMs can be easily fine-tuned with graphs from target domains and demonstrate even better performance than those directly trained from scratch, behaving as a solid starting point for real-world customization. Inspired by Stable Diffusion, we further equip LGGMs with the Text-to-Graph generation capability, such as providing the description of the network name and domain (i.e., “The power-1138-bus graph represents a network of buses in a power distribution system.”) and network statistics (i.e., “The graph has a low average degree, suitable for modeling social media interactions.”). This Text-to-Graph capability integrates the extensive world knowledge in the underlying language model, offering users fine-grained control of the generated graphs. We release the code, the model checkpoint, and the datasets at https://github.com/KINDLab-Fly/LGGM.
Language Model Alignment in Multilingual Trolley Problems
Zhijing Jin, Max Kleiman-Weiner, Giorgio Piatti, Sydney Levine, Jiarui Liu, Fernando Gonzalez Adauto, Francesco Ortu, András Strausz, Mrinmaya Sachan, Rada Mihalcea, Yejin Choi, David Ha
Abstract: We evaluate the moral alignment of large language models (LLMs) with human preferences in multilingual trolley problems. Building on the Moral Machine experiment, which captures over 40 million human judgments across 200+ countries, we develop a cross-lingual corpus of moral dilemma vignettes in over 100 languages called MultiTP. This dataset enables the assessment of LLMs’ decision-making processes in diverse linguistic contexts. Our analysis explores the alignment of 19 different LLMs with human judgments, capturing preferences across six moral dimensions: species, gender, fitness, status, age, and the number of lives involved. By correlating these preferences with the demographic distribution of language speakers and examining the consistency of LLM responses to various prompt paraphrasings, our findings provide insights into cross-lingual and ethical biases of LLMs and their intersection. We discover significant variance in alignment across languages, challenging the assumption of uniform moral reasoning in AI systems and highlighting the importance of incorporating diverse perspectives in AI ethics. The results underscore the need for further research on the integration of multilingual dimensions in responsible AI research to ensure fair and equitable AI interactions worldwide. Our code and data are at this https URL.
Cocoon: Robust Multi-Modal Perception with Uncertainty-Aware Sensor Fusion
Minkyoung Cho, Yulong Cao, Jiachen Sun, Qingzhao Zhang, Marco Pavone, Jeong Joon Park, Heng Yang, Z. Morley Mao
Abstract: An important paradigm in 3D object detection is the use of multiple modalities to enhance accuracy in both normal and challenging conditions, particularly for long-tail scenarios. To address this, recent studies have explored two directions of adaptive approaches: MoE-based adaptive fusion, which struggles with uncertainties arising from distinct object configurations, and late fusion for output-level adaptive fusion, which relies on separate detection pipelines and limits comprehensive understanding. In this work, we introduce Cocoon, an object- and feature-level uncertainty-aware fusion framework. The key innovation lies in uncertainty quantification for heterogeneous representations, enabling fair comparison across modalities through the introduction of a feature aligner and a learnable surrogate ground truth, termed feature impression. We also define a training objective to ensure that their relationship provides a valid metric for uncertainty quantification. Cocoon consistently outperforms existing static and adaptive methods in both normal and challenging conditions, including those with natural and artificial corruptions. Furthermore, we show the validity and efficacy of our uncertainty metric across diverse datasets.

AutoDAN-Turbo: A Lifelong Agent for Strategy Self-Exploration to Jailbreak LLMs
Xiaogeng Liu, Peiran Li, G. Edward Suh, Yevgeniy Vorobeychik, Z. Morley Mao, Somesh Jha, Patrick McDaniel, Huan Sun, Bo Li, Chaowei Xiao
Abstract: In this paper, we propose AutoDAN-Turbo, a black-box jailbreak method that can automatically discover as many jailbreak strategies as possible from scratch, without any human intervention or predefined scopes (e.g., specified candidate strategies), and use them for red-teaming. As a result, AutoDAN-Turbo can significantly outperform baseline methods, achieving a 74.3% higher average attack success rate on public benchmarks. Notably, AutoDAN-Turbo achieves an 88.5 attack success rate on GPT-4-1106-turbo. In addition, AutoDAN-Turbo is a unified framework that can incorporate existing human-designed jailbreak strategies in a plug-and-play manner. By integrating human-designed strategies, AutoDAN-Turbo can even achieve a higher attack success rate of 93.4 on GPT-4-1106-turbo.
Subtask-Aware Visual Reward Learning from Segmented Demonstrations
Changyeon Kim, Minho Heo, Doohyun Lee, Honglak Lee, Jinwoo Shin, Joseph Lim, Kimin Lee
Abstract: Reinforcement Learning (RL) agents have demonstrated their potential across various robotic tasks. However, they still heavily rely on human-engineered reward functions, requiring extensive trial-and-error and access to target behavior information, often unavailable in real-world settings. This paper introduces REDS: REward learning from Demonstration with Segmentations, a novel reward learning framework that leverages action-free videos with minimal supervision. Specifically, REDS employs video demonstrations segmented into subtasks from diverse sources and treats these segments as ground-truth rewards. We train a dense reward function conditioned on video segments and their corresponding subtasks to ensure alignment with ground-truth reward signals by minimizing the Equivalent-Policy Invariant Comparison distance. Additionally, we employ contrastive learning objectives to align video representations with subtasks, ensuring precise subtask inference during online interactions. Our experiments show that REDS significantly outperforms baseline methods on complex robotic manipulation tasks in Meta-World and more challenging real-world tasks, such as furniture assembly in FurnitureBench, with minimal human intervention. Moreover, REDS facilitates generalization to unseen tasks and robot embodiments, highlighting its potential for scalable deployment in diverse environments.

Beyond the Imitation Game: Quantifying and extrapolating the capabilities of language models
David Jurgens, and 451 additional authors
Abstract: Language models demonstrate both quantitative improvement and new qualitative capabilities with increasing scale. Despite their potentially transformative impact, these new capabilities are as yet poorly characterized. In order to inform future research, prepare for disruptive new model capabilities, and ameliorate socially harmful effects, it is vital that we understand the present and near-future capabilities and limitations of language models. To address this challenge, we introduce the Beyond the Imitation Game benchmark (BIG-bench). BIG-bench currently consists of 204 tasks, contributed by 450 authors across 132 institutions. Task topics are diverse, drawing problems from linguistics, childhood development, math, common-sense reasoning, biology, physics, social bias, software development, and beyond. BIG-bench focuses on tasks that are believed to be beyond the capabilities of current language models. We evaluate the behavior of OpenAI’s GPT models, Google-internal dense transformer architectures, and Switch-style sparse transformers on BIG-bench, across model sizes spanning millions to hundreds of billions of parameters. In addition, a team of human expert raters performed all tasks in order to provide a strong baseline. Findings include: model performance and calibration both improve with scale, but are poor in absolute terms (and when compared with rater performance); performance is remarkably similar across model classes, though with benefits from sparsity; tasks that improve gradually and predictably commonly involve a large knowledge or memorization component, whereas tasks that exhibit “breakthrough” behavior at a critical scale often involve multiple steps or components, or brittle metrics; social bias typically increases with scale in settings with ambiguous context, but this can be improved with prompting.